Ddr4 максимальный объем планки. Новый стандарт RAM – оперативная память DDR4, характеристики и особенности

Ddr4 максимальный объем планки. Новый стандарт RAM – оперативная память DDR4, характеристики и особенности

23.04.2023

Стандартизирующая организация JEDEC Solid State Technology Association представила официальную финальную версию спецификацию стандарта оперативной памяти Synchronous DDR4 (Double Data Rate 4) .

Его введения является обеспечение нового уровня производительности оперативной памяти, её надёжности и сокращения уровня энергопотребления.

Память DDR4 включает в себя целый ряд современных достижений, которые позволят новому типу памяти получить широкое распространение в компьютерных устройствах — от бытовых приборов до серверов и еще более мощных компьютерных систем.

  • Уровень быстродействия на один разъём в DDR4 установлен на 1,6 миллиардов пересылок в секунду, с возможностью в будущем достичь максимального уровня 3,2 млрд./с.
  • Минимальная рабочая частота памяти DDR4 составляет 2133 МГц до 4266 МГц, что на 1000 МГц больше, чем у своей предшественницы (1333 МГц и 1666 МГц в стандарте прошлого поколения).
  • Для памяти с частотой 2133 МГц (наименьшая частота для памяти DDR4) максимальная пропускная способность составит 2133 * 8 = 17 064 Мегабайт/c.
  • Для памяти с частотой 4266 МГц (наибольшая частота, определенная в стандарте) максимальная пропускная способность составит 4266 * 8 = 34 128 Мегабайт/c.
  • Рабочее напряжение понижено: 1,1 В - 1,2 В против 1,5 В в DDR3.
  • Предполагаемый техпроцесс — 32 и 36 нм.

Архитектура DDR4 позволяет осуществлять предварительную выборку 8 бит данных за один такт (8n prefetch) с двумя или четырьмя выбираемыми группами блоков памяти. Это позволяет устройствам проводить независимые друг от друга операции по активации, чтению, записи и обновлению посредством отдельных блоков памяти.

Все перечисленные возможности, а также еще целый ряд более мелких изменений и нововведений позволили существенно повысить эффективность памяти DDR4 .

DDR4 модуль имеет 284 контактов , в то время как у стандартных модулей DDR3 есть только 240 контактов.

В SO-DIMM версии будут представлены 256 контактов , а DDR3 SO-DIMM имеют только 204 контакта.

В спецификациях DDR4 впервые появилось описание работы с памятью в многокристальной упаковке. Стандартом допускается столбик (стек) из восьми кристаллов. Причём все кристаллы «вешаются» на общие сигнальные линии. Сделано это не потому, что так лучше (хотя это действительно упрощает действия по расширению пространства памяти), а по тем причинам, что в целом идеология работы памяти DDR4 — это соединение модулей с контроллерами по схеме «точка-точка».

Каналов будет много, а не два-четыре, поэтому каждому из них необходимо обеспечить максимально возможную производительность, не перегружая при этом механизмы обмена. В том же ключе надо рассматривать возможность независимой одновременной работы двух или четырёх банков памяти. Для каждой группы банков архитектурно разрешены одновременно все основные операции, такие как чтение, запись и регенерация.

По прогнозу iSuppli, к 2014 году уровень проникновения на рынок памяти DDR4 составит 12 %, к 2015 - 56 %. Однако, производители могут и поторопиться с началом внедрения нового стандарта, побуждаемые желанием поднять цены на свои продукты, которые сейчас находятся на крайне низком уровне. Micron, например, ещё в мае анонсировала разработку первого полнофункционального модуля и планы по началу их массового производства в конце нынешнего года. Samsung уже продемонстрировал 284-контактную память PC4-17000(2133 Мгц). Остаётся только дождаться их поддержки от Intel и AMD. Intel планирует начать поддержку DDR4 начале 2014 года в высокопроизводительных 4-сокетных серверных системах на процессорах Haswell-EX, обычным же пользователям придётся, вероятно, подождать 2015 года, так как ни в 22 нм процессорах Haswell, ни в следующих за ними 14 нм Broadwell поддержка DDR4 не предусмотрена.

Стандарт DDR4 является всего лишь одним из первых шагов на пути к повсеместному внедрению памяти следующего поколения. В числе областей применения памяти DDR4 названы серверы, ноутбуки, настольные ПК и изделия потребительской электроники. Вначале DDR4 появится в серверных системах и уже после этого стартует массовое производство такой памяти для потребительских компьютеров.

Ассортимент доступной памяти DDR4 на рынке постепенно увеличивается. На сегодняшний день эта память совместима лишь с материнскими платами на основе чипсета Intel X99 и, соответственно, процессорами c кодовым наименованием Haswell-E (разъем LGA2011-v3). Собственно, тот факт, что память DDR4 совместима только с указанной платформой Intel, уже означает, что она предназначена для самых производительных на сегодняшний день ПК. Все материнские платы на чипсете Intel X99 поддерживают до 64 ГБ памяти DDR4 в четырехканальном режиме (при условии, что на плате имеется восемь слотов для модулей памяти). Сразу оговоримся, что речь идет о нерегистровой (UDIMM) памяти non-ECC. Дело в том, что на некоторых платах с чипсетом Intel X99 реализована поддержка серверных процессоров семейства Intel Xeon E5 v.3 (имеющих тот же разъем LGA2011-v3 и ту же архитектуру процессора). В этом случае поддерживается память c ECC, причем как регистровая (RDIMM), так и нерегистровая (UDIMM), а максимальный объем памяти составляет уже 128 ГБ. Однако серверную память мы рассматривать в данной статье не будем и в дальнейшем под памятью DDR4 мы будем понимать нерегистровую память без ECC.

Что касается емкости модулей памяти DDR4, то в продаже имеются модули емкостью 4 ГБ (они наиболее распространены) и 8 ГБ. Память DDR4 поступает в продажу как в виде отдельных модулей, так и в виде комплектов, состоящих из двух, четырех и даже восьми модулей. Но наиболее распространены комплекты из четырех модулей памяти (четырехканальные комплекты). Соответственно, суммарная емкость такого комплекта может быть либо 16, либо 32 ГБ. Наиболее распространенными сегодня на рынке являются четырехканальные наборы памяти с суммарной емкостью 16 ГБ, то есть наборы из четырех модулей памяти с емкостью каждого модуля 4 ГБ.

Минимальная частота памяти DDR4, предусмотренная стандартом, составляет 1066 МГц. Соответственно, эффективная частота в этом случае составляет 2133 МГц (память DDR4-2133), а пропускная способность - 17056 МБ/c (в одноканальном режиме). Максимальная частота памяти, предусмотренная стандартом, составляет 2133 МГц, ее эффективная частота в этом случае составляет 4266 МГц (память DDR4-4266), а пропускная способность - 34128 МБ/c (в одноканальном режиме). Правда, частота 2133/4266 МГц - это задел на будущее, пока такой памяти в продаже нет. Реально сегодня на рынке имеется память с эффективной частотой от 2133 МГц до 3000 МГц, причем стандартизированной, похоже, является лишь память DDR4-2133, а более скоростная память реализуется через XMP-профили.

Как правило, модули более дорогой и более скоростной памяти DDR4 оснащаются радиаторами, которые не несут никакой смысловой нагрузки, кроме привлечения внимания пользователей. Радиаторы на модулях памяти - это чисто декоративная и, по большому счету, бессмысленная вещь, поскольку чипы памяти просто не нагреваются настолько, чтобы им требовалось охлаждение с использованием радиаторов. Не будем голословными и подтвердим сказанное фактами. Для того чтобы продемонстрировать бессмысленность радиаторов на модулях памяти, мы воспользовались пирометром, позволяющим дистанционно определять изменение температуры. Для теста использовался модуль памяти DDR4-2133 (15-15-15) без радиатора, напряжение питания составляло 1,2 В. В режиме простоя температура чипов памяти составляла 31,2 °C, а при загрузке памяти с использованием стресс-теста Stress System Memory в утилите AIDA64 температура чипов памяти увеличивалась до 35,5 °C. При разгоне той же памяти до частоты 2400 МГц и напряжении питания 1,35 В в режиме простоя температура чипов памяти составляла 32,7 °C, а при загрузке памяти увеличивалась до 38,1 °C. Понятно, что при таких температурах никакого смысла в радиаторах просто нет. Кроме того, все модули памяти DDR4 емкостью 4 ГБ являются односторонними, то есть чипы памяти расположены с одной стороны модуля. Казалось бы, уж если и приклеивать радиатор, то только с одной стороны. Однако радиаторы на таких модулях памяти всегда с двух сторон - просто так красивее.

Теперь о стоимости. В первом приближении память DDR4 стоит примерно 1 тысячу рублей за 1 ГБ. То есть модуль памяти емкостью 4 ГБ стоит примерно 4 тысячи рублей, а модуль памяти емкостью 8 ГБ - 8 тысяч рублей. Однако нужно иметь в виду, что декоративные радиаторы и более высокая заявленная частота работы приводят к увеличению стоимости памяти. То есть модуль памяти DDR4-3000 будет дороже модуля памяти DDR4-2133 (при равной емкости).

AMD Radeon R7 Performance Series (R744G2133U1S)

Как бы это ни казалось странным, но компания AMD производит наборы памяти DDR4, которые на сегодняшний день совместимы только с процессорами Intel. Впрочем, об этом скромно умалчивается, а потому найти какую-либо техническую информацию о памяти DDR4 там не представляется возможным. Видимо, гордость не позволяет предавать гласности этот факт, но и отказаться от зарабатывания денег компания не желает.

По имеющейся у нас информации, на сегодняшний день AMD предлагает два четырехканальных комплекта памяти DDR4, которые отличаются лишь емкостью: это комплекты из четырех модулей с суммарной емкостью 32 ГБ (R748G2133U2S) и комплекты из четырех модулей с суммарной емкостью 16 ГБ (R744G2133U1S). Для обоих комплектов частота памяти составляет 2133 МГц, а тайминги - 15-15-15-36.

Далее мы рассмотрим комплект памяти из четырех модулей с суммарной емкостью 16 ГБ (R744G2133U1S), который относится к серии AMD Radeon R7 Performance. Как уже отмечалось, модули памяти AMD R744G2133U1S имеют частоту 2133 МГц и тайминги 15-15-15-36, а напряжение питания составляет 1,2 В (это стандартное значение).

Заявленная частота памяти невысокая (это минимальное значение для DDR4), но велика вероятность, что данную память удастся заставить работать на более высокой частоте.

Модули памяти оснащены радиаторами охлаждения темно-серого цвета, которые представляют собой две металлические пластины, наклеенные с каждой стороны модуля. При этом сами модули являются односторонними, то есть чипы памяти расположены у них только с одной стороны.

На нашем тестовом стенде с настройками в UEFI BIOS по умолчанию память AMD Radeon R7 Performance Series (R744G2133U1S) завелась на частоте 2133 МГц с таймингами 15-15-15-36, то есть именно так, как и должно быть.

Кроме того, выяснилось, что память может работать и на частоте 2400 МГц. При запуске памяти на данной частоте автоматически устанавливаются тайминги 18-18-18-40, однако на частоте 2400 МГц данная память может работать и с таймингами 18-11-11-36.

Далее приведены результаты тестов в программе AIDA64 комплекта модулей памяти AMD Radeon R7 Performance Series (R744G2133U1S) с настройками по умолчанию (DDR4-2133; 15-15-15-36) и в состоянии разгона (DDR4-2400; 18-11-11-36).


Geil Evo Potenza GPR416GB3000C16QC

Комплект четырехканальной памяти Geil GPR416GB3000C16QC относится к серии . Это четыре модуля памяти DDR4-3000 суммарным объемом 16 ГБ (4 × 4 ГБ). Модули памяти оснащены радиаторами охлаждения бордового цвета. Сами модули памяти односторонние, то есть все чипы памяти расположены на них с одной. Вообще, нужно отметить, что радиаторы на памяти внушительно, скажем так, не выглядят. Толщина пластинок, из которых сделан радиатор, составляет менее 1 мм. Высота модуля памяти с радиатором - 47 мм.

Согласно информации на сайте производителя, на частоте 3000 МГц модули памяти Geil Evo Potenza GPR416GB3000C16QC могут работать с таймингами 16-16-16-36 при напряжении питания 1,35 В. Причем данный режим работы модулей памяти обеспечивается при активации XMP-профиля.

Отметим, что в серию четырехканальной (Quad Channel) памяти Geil Evo Potenza входят еще и комплекты памяти DDR4-2133/2400/2666/2800, а также более скоростная память DDR4-3200. Комплекты четырехканальной памяти Geil Evo Potenza DDR4-3000 тоже могут быть разными: так, кроме 16-гигабайтных комплектов есть и комплекты с суммарным объемом 32 ГБ. Могут отличаться и тайминги памяти: 15-15-15-35 или 16-16-16-36. С учетом двух возможных объемов и двух наборов таймингов в серию Geil Evo Potenza DDR4-3000 входят четыре комплекта памяти:

  • GPR416GB3000C15QC: тайминги 15-15-15-35, суммарный объем 16 ГБ;
  • GPR416GB3000C16QC: тайминги 16-16-16-36, суммарный объем 16 ГБ
  • GPR432GB3000C15QC: тайминги 15-15-15-35, суммарный объем 32 ГБ;
  • GPR432GB3000C16QC: тайминги 16-16-16-36, суммарный объем 32 ГБ.

Теперь расскажем о тех сложностях, с которыми мы столкнулись при тестировании памяти Geil Evo Potenza GPR416GB3000C16QC.

Прежде всего, отметим, что заявленная частота 3000 МГц при таймингах 16-16-16-36 и напряжении питания 1,35 В - это характеристики XMP- профиля. И, естественно, не факт, что на любой плате этот профиль сработает и что память вообще «заведется» на такой частоте. Как показывает практика, есть платы на чипсете Intel X99, которые с настойками UEFI BIOS по умолчанию пытаются сразу активировать XMP-профиль и заставить работать память при указанных характеристиках. Вот с такими платами у данного комплекта памяти будут большие проблемы и, скорее всего, он просто не заработает. В частности, мы опробовали данный комплект памяти на трех платах (Gigabyte GA X99-Gaming G1 WIFI, Asus Rampage V Extreme и ASRock Fatal1ty X99X Killer) и выяснилось, что плата ASRock Fatal1ty X99X Killer вообще не совместима с данной памятью.

А вот на платах Gigabyte GA X99-Gaming G1 WIFI и Asus Rampage V Extreme с настройками UEFI BIOS по умолчанию, память Geil Evo Potenza GPR416GB3000C16QC определялась по-разному.

Так, в случае платы Asus Rampage V Extreme комплект памяти Geil Evo Potenza GPR416GB3000C16QC определяется как DDR4-2400 с таймингами 17-15-15-35 (напряжение питания 1,2 В).

В случае платы Gigabyte GA X99-Gaming G1 WIFI этот же комплект памяти определялся как DDR4-2400, но уже с таймингами 16-16-16-35.

Теперь о самом главном. Ни на одной из наших тестовых плат память Geil Evo Potenza GPR416GB3000C16QC не смогла заработать при настройках, определенных в XMP-профиле, то есть при эффективной частоте 3000 МГц с таймингами 16-16-16-36 и при напряжении питания 1,35 В. Если же вручную установить в UEFI BIOS частоту 3000 МГц, тайминги 16-16-16-36 и напряжение питания 1,35 В, система не будет загружаться. Мы также пытались «загрубить» тайминги для частоты 3000 МГц, но все было тщетно. При такой частоте память работать отказалась.

Методом проб и ошибок было выяснено, что наш комплект памяти Geil Evo Potenza GPR416GB3000C16QC может работать на максимальной частоте 2666 МГц, не выше. Фактически, заявленная частота в 3000 МГц оказалось попросту обманкой. Впрочем, не будем делать столь громкие заявления вообще и уточним, что конкретно наш комплект памяти Geil Evo Potenza GPR416GB3000C16QC с конкретно нашим процессором Intel Core i7-5960X и нашей платой Gigabyte GA X99-Gaming G1 WIFI не соответствует заявленным характеристикам.

Для частоты 2666 МГц наилучшие тайминги, которые мы смогли найти, были следующие: 13-14-14-30. При таких таймингах на частоте 2667 МГц все работает стабильно, без зависания.

Далее приведены результаты тестов в программе AIDA64 комплекта модулей памяти Geil Evo Potenza GPR416GB3000C16QC с настройками по умолчанию (DDR4-2400; 16-16-16-35) и в состоянии разгона (DDR4-2667; 13-14-14-30).


Kingston HyperX Predator HX424C12PBK4/16

Память Kingston HyperX Predator HX424C12PBK4/16 относится к оверклокерской серии памяти Kingston HyperX Predator.

Как следует из информации , компания производит очень широкий ассортимент комплектов памяти DDR4. Ёмкость комплектов может составлять 16, 32 и 64 ГБ, количество модулей в одном комплекте может быть равным четырем или восьми, а емкость одного модуля может составлять 4 или 8 ГБ. При этом, компания производит комплекты памяти DDR4 с эффективной частотой 2133, 2400, 2666, 2800 и 3000 МГц.

На сайте компании Kingston имеется для расшифровки названия модуля памяти. Воспользовавшись данной информацией, можно понять, что в названии модуля HX424C12PBK4/16 зашифрована следующая информация: это модуль памяти UDIMM DDR4-2400 c латентностью CAS 12. Память относится к серии HyperX Predator, оснащена радиатором черного цвета, а суммарная емкость комплекта из четырех модулей составляет 16 ГБ.


На нашем тестовом стенде с настройками UEFI BIOS по умолчанию память Kingston HyperX Predator HX424C12PBK4/16 завелась на частоте 2133 МГц с таймингами 15-15-15-36 и при напряжении питания 1,2 В.

Обещанная частота в 2400 МГц с таймингами 12-13-13-35 реализуется уже через XMP-профиль. Причем для памяти Kingston HyperX Predator HX424C12PBK4/16 имеется два XMP-профиля: один для частоты 2400 МГц с таймингами 12-13-13-35 при напряжении питания 1,4 В, а второй? для частоты 2133 МГц, но с таймингами 13-13-13-36 и при напряжении питания 1,2 В.

При активации в UEFI BIOS первого XMP-профиля (для частоты 2400 МГц) память, как и должна, заводится на частоте 2400 МГц с таймингами 12-13-13-35 при напряжении питания 1,4 В. Впрочем, вручную для частоты 2400 МГц можно подобрать и более короткие тайминги. В частности, на нашем тестовом стенде память работала с таймингами 12-12-12-35 (при частоте 2400 МГц).

А вот запустить память Kingston HyperX Predator HX424C12PBK4/16 на более высокой частоте (2600 МГц) даже при загрубении таймингов нам так и не удалось.


AData XPG AX4U2400W4G16-QRZ

Компания AData в двух сериях: Consumer (пользовательская) и Gaming (игровая). Есть еще и серверная память, но ее мы сейчас не рассматриваем. Комплект памяти относится к игровой серии Gaming.

Не стоит в данном случае воспринимать слово Gaming всерьез. Это лишь маркетинговое позиционирование памяти, которое направлено на привлечение внимания. От обычной серии Consumer память серии Gaming отличается наличием декоративных радиаторов (никакой иной смысловой нагрузки радиаторы не имеют) и тем, что память серии Gaming более скоростная.

В серии AData Gaming представлено очень большое количество различных комплектов памяти. Причем любой модуль памяти серии AData Gaming можно купить отдельно (один модуль), в наборе из двух модулей и в наборе из четырех модулей. Кроме того, имеются как модули емкостью 4 ГБ, так и модули емкостью 8 ГБ. Именно с эти и связано то, что ассортимент возможных комплектов памяти AData Gaming DDR4 очень широкий.

Впрочем, разобраться в этом ассортименте несложно. Есть память DDR4-2133 с таймингами 13-13-13 и 15-15-15. С учетом возможной емкости модулей (4 и 8 ГБ), а также различной комплектацией наборов (один, два и четыре модуля), получаем, что только памяти DDR4-2133 имеется двенадцать вариантов.

Далее, есть память DDR4-2400 с таймингами 16-16-16, память DDR4-2666 c таймингами 16-16-16, память DDR4-2800 с таймингами 17-17-17 и память DDR4-3000 с таймингами 16-16-16. Опять-таки, любая память может быть представлена наборами из одного, двух и четырех модулей, а емкость модуля может быть 4 или 8 ГБ.

Есть и более скоростная память DDR4-3200/3300/3333. Но для этой памяти тайминги только 16-16-16, а модули имеют емкость 4 ГБ.

Далее мы рассмотрим комплект из четырех модулей памяти AData XPG AX4U2400W4G16-QRZ. Как несложно догадаться по названию, речь идет о модулях памяти DDR4-2400 с таймингами 16-16-16. Напряжение питания этих модулей памяти составляет 1,2 В.

На нашем тестовом стенде с настройками UEFI BIOS по умолчанию память AData XPG AX4U2400W4G16-QRZ завелась на частоте 2133 МГц с таймингами 15-15-15-36 и при напряжении питания 1,2 В.

Обещанная частота в 2400 МГц с таймингами 16-16-16 реализуется уже через XMP-профиль.

При активации в UEFI BIOS XMP-профиля память, как и должна, заводится на частоте 2400 МГц с таймингами 16-16-16-39.

На более высокой частоте завести память AData XPG AX4U2400W4G16-QRZ нам не удалось. Однако при частоте 2400 МГц можно подобрать и более хорошие тайминги. Наилучшие тайминги, которые удалось подобрать для данной памяти при частоте 2400 МГц, составили 13-12-12-36.


AData AD4U2133W4G15-B

Если предыдущий комплект AData относился к игровой серии, то комплект памяти относится к серии Consumer, то есть к самой простой серии памяти DDR4.

В серию Consumer входят модули памяти DDR4-2133 двух типов: с емкостью 4 ГБ и с емкостью 8 ГБ. В первом случае модули называются AData AD4U2133W4G15-B, а во втором - AData AD4U2133W8G15-B. Все остальные характеристики модулей абсолютно одинаковые. Эффективная частота памяти составляет 2133 МГц, тайминги 15-15-15-36, а напряжение питания 1,2 В. Модули памяти с емкостью 4 ГБ являются односторонними и основаны на чипах памяти SKhynix H5AN4G8NMFR (8 чипов по 512 МБ).

Отметим, что никаких радиаторов на модулях памяти AData AD4U2133W8G15-B не предусмотрено.


На нашем тестовом стенде с настройками UEFI BIOS по умолчанию память AData AD4U2133W8G15-B завелась без проблем в полном соответствии со спецификацией, то есть на частоте 2133 МГц с таймингами 15-15-15-36 и при напряжении питания 1,2 В.

Более того, выяснилось, что эта память может работать и на частоте 2400 МГц. При установке данной частоты тайминги в автоматическом режиме устанавливаются равными 16-17-17-40. Наилучшие тайминги, которые удалось подобрать для данной памяти без потери стабильности в работе, составили 14-14-14-36.


Тестирование

Итак, всего в нашем тестировании приняли участие пять комплектов четырехканальной памяти DDR4, каждый из которых был протестирован в двух режимах работы: с настройками по умолчанию и с настройками, соответствующими максимальному разгону.

Память частота тайминги
AData AD4U2133W8G15-B по умолчанию 2133 15-15-15-36
разгон 2400 14-14-14-36
AData XPG AX4U2400W4G16-QRZ по умолчанию 2133 15-15-15-36
разгон 2400 13-12-12-36
Kingston HyperX Predator HX424C12PBK4/16 по умолчанию 2133 15-15-15-36
разгон 2400 12-12-12-35
AMD Radeon R7 Performance Series (R744G2133U1S) по умолчанию 2133 15-15-15-36
разгон 2400 18-11-11-36
Geil Evo Potenza GPR416GB3000C16QC по умолчанию 2400 16-16-16-36
разгон 2667 13-14-14-30

Прежде всего, отметим, что все комплекты памяти, за исключением Geil Evo Potenza GPR416GB3000C16QC, по умолчанию определялись как память DDR4-2133 с таймингами 15-15-15-36. Во всех наших тестах все комплекты в режиме DDR4-2133 с таймингами 15-15-15-36 выдали практически одинаковые результаты. И дабы не загромождать статью лишними данными, в дальнейшем мы будем говорить просто о памяти DDR4-2133 с таймингами 15-15-15-36, подразумевая под ней любой комплект с настройками по умолчанию - за исключением памяти Geil Evo Potenza GPR416GB3000C16QC.

Для тестирования мы использовали стенд следующей конфигурации:

  • процессор Intel Core i7-5960X;
  • материнская плата Gigabyte X99-Gaming G1 WIFI;
  • чипсет Intel X99;
  • накопитель Intel SSD 520 Series (240 ГБ):
  • операционная система Windows 8.1 (64-битная).

Измерение производительности проводилось с использованием реальных приложений из нашего тестового скрипта iXBT Application Benchmark 2015 . Использование синтетических тестов, которые так любят производители памяти, мы считаем в данном случае просто бессмысленным, поскольку выдаваемые ими «попугаи» не имеют никакого отношения к реальности.

Из пакета iXBT Application Benchmark 2015 мы намеренно исключили тесты, скорость выполнения которых зависит от подсистемы хранения данных (скорость копирования, скорость инсталляции и деинсталляции приложения и т. д.). Кроме того, был исключен тест Adobe After Effects CC 2014.1.1 (Test #2). Дело в том, что для данного теста в случае использования 8-ядерного (16 логических ядер) процессора Intel Core i7-5960X желательно использовать не 16, а 32 ГБ памяти. В противном случае тест будет выполняться без технологии мультипроцессинга, либо нужно принудительно уменьшить количество используемых ядер процессора. Одним словом, проще исключить этот тест, тем более что в методике имеется еще один тест с использованием приложения Adobe After Effects CC 2014.1.1. Кроме того, мы исключили тесты, которые имеют большую погрешность измерения и для получения достоверного результата требуют большого числа повторов. При тестировании памяти, когда изменение частоты и таймингов приводит лишь к мизерному росту производительности, очень важно применять тесты, в которых результат имеет очень хорошую повторяемость (с малой погрешностью измерения).

В результате мы оставили следующие тесты:

  • MediaCoder x64 0.8.33.5680,
  • Adobe Premiere Pro CC 2014.1,
  • Adobe After Effects CC 2014.1.1,
  • Photodex ProShow Producer 6.0.3410,
  • Adobe Photoshop CC 2014.2.1,
  • ACDSee Pro 8,
  • Adobe Illustrator CC 2014.1.1,
  • Adobe Audition CC 2014.2,
  • WinRAR 5.11, архивирование,
  • WinRAR 5.11, разархивирование.

Итак, начнем с теста по транскодированию видео с использованием приложения MediaCoder x64 0.8.33.5680. Как видим, данная задача не очень чувствительна к быстродействию памяти: худший результат отличается от лучшего всего на 6%. Интересно отметить, что память Geil Evo Potenza на частоте 2667 МГц с таймингами 13-14-14-30 демонстрирует такой же результат, что и память Kingston HyperX Predator на частоте 2400 МГц с таймингами 12-12-12-35. А на частоте 2400 МГц (с таймингами 16-16-16-35) память Geil Evo Potenza работает примерно так же, как память DDR4-2133.

В приложении Adobe Premiere Pro CC 2014.1 получаем аналогичный результат. Разница по времени выполнения теста между памятью DDR4-2133 и DDR4-2400 составляет примерно 5%. И в данном тесте память Geil Evo Potenza на частоте 2667 МГц с таймингами 13-14-14-30 демонстрирует такой же результат, что и любая другая память в режиме DDR4-2400. А на частоте 2400 МГц (с таймингами 16-16-16-35) память Geil Evo Potenza работает примерно так же, как память DDR4-2133.

В тесте на основе приложения Adobe After Effects CC 2014.1.1 разница между худшим и лучшим результатами составляет не более 5%. Вновь память Geil Evo Potenza на частоте 2667 МГц с таймингами 13-14-14-30 демонстрирует такой же результат, что и любая другая память в режиме DDR4-2400. А на частоте 2400 МГц (с таймингами 16-16-16-35) память Geil Evo Potenza работает примерно так же, как память DDR4-2133.

Приложение Photodex ProShow Producer 6.0.3410 немного более чувствительно к скорости памяти, и в нашем тесте разница между худшим и лучшим результатами составляет порядка 6%. Но опять-таки, самая «скоростная» память Geil Evo Potenza на частоте 2667 МГц работает так же, как любая другая память DDR4-2400, а на частоте 2400 МГц результаты памяти Geil Evo Potenza сопоставимы с результатами DDR4-2133.

Приложение Adobe Photoshop CC 2014.2.1 оказалось малочувствительным к скорости работы памяти. В нашем тесте разница между худшим и лучшим результатами составила порядка 3,5%. И опять «странная» память Geil Evo Potenza на частоте 2667 МГц работает примерно так же, как любая другая память DDR4-2400, а на частоте 2400 МГц результаты памяти Geil Evo Potenza сопоставимы с результатами DDR4-2133.

В тесте с использованием приложения ACDSee Pro 8 зависимость от скорости работы памяти совсем уж незначительная: разница между худшим и лучшим результатами составила порядка 1,5%. Память Geil Evo Potenza ничем приятным не удивила: на частоте 2667 МГц она работает примерно так же, как любая другая память DDR4-2400, а на частоте 2400 МГц результаты памяти Geil Evo Potenza даже немного хуже, чем результаты DDR4-2133.

В тесте с использованием приложения Adobe Illustrator CC 2014.1.1 от скорости работы памяти вообще ничего не зависит. Здесь для всех комплектов памяти в различных режимах их работы получаются одинаковые результаты.

А вот в тесте с использованием приложения Adobe Audition CC 2014.2 зависимость от скорости работы памяти хоть и незначительная, но есть: разница между худшим и лучшим результатами составила 4,8%. Для памяти Geil Evo Potenza, как и в остальных случаях, получаем следующее: на частоте 2667 МГц она работает немного хуже, чем любая другая память DDR4-2400, а на частоте 2400 МГц результаты памяти Geil Evo Potenza примерно такие же, как результаты DDR4-2133.

В тесте архивирования с использованием приложения WinRAR 5.11 разница между худшим и лучшим результатами составила 5,6%. Память Geil Evo Potenza на частоте 2667 МГц работает немного хуже, чем любая другая память DDR4-2400, а на частоте 2400 МГц результаты памяти Geil Evo Potenza примерно такие же, как результаты DDR4-2133.

В тесте разархивирования с использованием приложения WinRAR 5.11 разница между худшим и лучшим результатами составила 4%. И как всегда, память Geil Evo Potenza на частоте 2667 МГц демонстрирует результаты, типичные для памяти DDR4-2400, а на частоте 2400 МГц - результаты, типичные для DDR4-2133.

Выводы

Собственно, выводы, которые можно сделать из нашего тестирования, вполне предсказуемы. Особого смысла в высокоскоростной памяти DDR4 сегодня нет, и варианта DDR4-2133 вполне достаточно для большинства пользовательских приложений. Максимальный прирост производительности, который можно получить за счет использования скоростной памяти DDR4-2400 вместо стандартной DDR4-2133, составляет порядка 5%. И уж тем более мы не обнаружили никакой значимой разницы между модулями/комплектами разных производителей.

Причем, как выяснилось, скоростная память, которая продается под видом DDR4-2400, является на самом деле разогнанным вариантом памяти DDR4-2133, то есть режим работы DDR4-2400 реализуется только через XMP-профиль. И скорее всего, купив самую обычную память DDR4-2133, вы сможете сделать из нее DDR4-2400. Так есть ли смысл переплачивать?

Память DDR4-3000 (Geil Evo Potenza GPR416GB3000C16QC) оказалась памятью DDR4-2400, и на обещанной скорости 3000 МГц она работать попросту отказалась. Вообще, память Geil Evo Potenza GPR416GB3000C16QC очень странная. В режиме DDR4-2667 (максимальная частота, на которой ее удалось запустить) она работает как память DDR4-2400, а в режиме DDR4-2400 - как память DDR4-2133. Собственно, это пример для тех, кто считает, что высокоскоростная память - это круто.

Что касается разнообразных радиаторов причудливой формы на модулях высокоскоростной памяти, то, как мы уже говорили, это не более чем декоративный элемент. Современной памяти DDR4 даже при повышенном до 1,4 В напряжении питания радиаторы не нужны вовсе.

Небольшое экспресс-тестирование работы процессоров под LGA1151 с памятью, типа DDR3 и DDR4 мы проводили еще в прошлом году, а в этом немного расширили изученную область в направлении бюджетных моделей для этой платформы. В общем и целом сложилось ощущение, что преимуществ по производительности у нового типа памяти нет, зато она позволяет сэкономить немного энергии, что в последние годы стало основной точкой приложения усилий Intel при разработке новых микроархитектур. Правда, влияние памяти на энергопотребление старших моделей процессоров Intel мы не исследовали. Да и вообще - их тесты проводились еще с использованием старой методики тестирования, причем очень разных системных плат и т. п., так что сделанные в прошлом году выводы могут и устареть. Поэтому мы решили исследовать вопрос более тщательно и подробно.

Конфигурация тестовых стендов

Процессор Intel Celeron G3900 Intel Pentium G4500T Intel Core i3-6100 Intel Core i5-6400 Intel Core i7-6700K
Название ядра Skylake Skylake Skylake Skylake Skylake
Технология пр-ва 14 нм 14 нм 14 нм 14 нм 14 нм
Частота ядра std/max, ГГц 2,8 3,0 3,7 2,7/3,3 4,0/4,2
Кол-во ядер/потоков 2/2 2/2 2/4 4/4 4/8
Кэш L1 (сумм.), I/D, КБ 64/64 64/64 64/64 128/128 128/128
Кэш L2, КБ 2×256 2×256 2×256 4×256 4×256
Кэш L3 (L4), МиБ 2 3 3 6 8
Оперативная память 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
TDP, Вт 51 35 51 65 91
Графика HDG 510 HDG 530 HDG 530 HDG 530 HDG 530
Кол-во EU 12 23 23 24 24
Частота std/max, МГц 350/950 350/950 350/1050 350/950 350/1150
Цена T-13475848 T-12874617 T-12874330 T-12873939 T-12794508

Мы воспользовались пятью процессорами, причем два из них уже были протестированы ранее - именно поэтому сегодня будут использоваться результаты Pentium G4500T, а не несколько более актуальных для розничных покупателей G4500/G4520: обычная экономия временны́х затрат. Все равно в наибольшей степени нас интересуют не они, а процессоры чуть более высокого класса - например, младшие в линейках Core i3-6100 и i5-6400. Почему именно младшие? Как нам кажется, именно у покупателей таковых наиболее вероятно желание сэкономить при модернизации системы, не меняя шило на мыло DDR3 на DDR4. Да и при покупке новой системы то, что на данный момент бюджетные платы с поддержкой DDR3 стоят немного дешевле аналогов со слотами DDR4, важнее всего именно тем, кто собирает бюджетный компьютер. А если уж сможет себе позволить какой-нибудь Core i3-6320, то лучше «дотянет» до «настоящего четырехъядерного» Core i5-6400. Но, тем не менее, не протестировать совместно с DDR3 топовый Core i7-6700K мы тоже не могли - все-таки это самое быстрое (и самое прожорливое) предложение Intel для данной платформы, поэтому и крайне необходимое для оценки максимального потенциального эффекта от перехода на новый стандарт памяти.

Что касается собственно модулей памяти, то в обоих случаях мы использовали пару таковых, суммарной емкостью 8 ГБ. Частота соответствовала поддерживаемой по стандарту - 1600 МГц для DDR3 и 2133 МГц для DDR4. В принципе, некоторые производители системных плат предлагают возможности разгона памяти и для DDR3, но тут есть один деликатный момент - для достижения высоких частот обычно используется повышенное до 1,65 В (вместо стандартных 1,5 В) напряжение питания. При этом Intel не рекомендует так поступать еще со времен LGA1156, предупреждая, что повышенное напряжение может привести и к повреждению процессора. А ведь официально устройствам для LGA1151 разрешено работать даже не с DDR3, а с DDR3L, работающей на напряжении 1,35 В, т. е. для них эта проблема может оказаться и более выраженной. Впрочем, справедливости ради, за прошедшие семь лет мы ни разу не сталкивались с выходом процессоров из строя, даже при использовании «оверклокерских» модулей. Более того - и не слышали о ситуациях, в которых можно было однозначно заявить о наличии таких проблем. Но береженого известно кто бережет:) Тем более, под концепцию минимизации цены системы разнообразные «хай-енд»-модули с декоративными радиаторами и прочими светодиодами все равно никак не подходят, поскольку и стоят уже дороже массовой DDR4. А вот банальная DDR3-1600 все еще может оказаться полезной.

Системных плат потребовалось две. В идеале, конечно, такое тестирование стоило проводить на универсальной модели, тройка каковых уже есть в ассортименте ASRock, но к нам в руки они пока не попадали. Поэтому мы просто взяли две платы, максимально-сходные по конструкции и даже назначению: ASRock Fatal1ty B150 Gaming K4 и Asus B150 Pro Gaming D3 . И основанные на одном и том же чипсете, что тоже может оказаться немаловажным, равно как и сходная (десятиканальная) схема питания процессора.

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Первая же группа программ преподнесла сюрприз - на трех процессорах из пяти DDR3 оказалась быстрее, чем DDR4. Изучение подробных результатов показывает, что «благодарить» за это нужно одну программу, а именно Adobe After Effects CC 2015. Предыдущая ее версия, помнится, испортила нам немало крови из-за своих требований к емкости памяти (причем зависящих от прочего аппаратного окружения), теперь вот новая напасть - и связанная именно с памятью. На медленных процессорах, впрочем, незаметная - там доверительные интервалы разных измерений существенно пересекаются. Но вот при возможности использовать четыре или более потоков вычисления, на погрешность разницу уже не спишешь: на Core i3-6100 и i5-6400 она превышает 10%. А для i7-6700K - немного уменьшается: судя по всему, благодаря большей емкости кэш-памяти. В общем, «прогресс» иногда может оказаться и таким. Локально - остальные программы группы работают на системе с DDR4 либо также, либо немного быстрее, что и приводит в конечном итоге к почти равным результатам. Для разных типов памяти, но не процессоров, разумеется, т. е. перед нами как раз тот случай, когда экономия посредством сохранения старой памяти может позволить приобрести более быстрый процессор, что окупится сторицей.

В данном случае, напротив, имеем некоторый прирост результатов при использовании DDR4, причем, чем быстрее процессор, тем он выше. Но даже в крайнем случае не превышает 3%, т. е. бежать менять память только лишь из-за производительности не стоит.

Формально - новая память лучше, фактически же разница в доли процента интересна может оказаться только любителям бенчмарков, но не для практического использования.

Аналогичный случай. Нет, конечно, результаты стабильно выше. Но такой прирост производительности без фотофиниша не зафиксируешь, так что лучше просто не обращать на него внимания.

Опять отличия в пределах 1%. Даже там, где они вообще есть. Покупателям же систем начального уровня тем более имеет смысл не волноваться, а попробовать сэкономить. Даже при покупке нового компьютера об этом можно пока поразмыслить, не говоря уже о том случае, когда достаточный объем DDR3 остался от старого.

При упаковке данных Core i7-6700K все-таки сумел героически «выжать» целых 2% разницы за счет большей ПСП. Остальным же более чем достаточно и DDR3-1600, а DDR4 может даже помешать из-за пока еще больших задержек.

Файловые операции последние лет пять умеют активно «нагружать» память, однако мы не склонны в данном случае относить эффект на счет ее производительности. Скорее, прочие сторонние факторы, типа работы контроллера в том режиме, на который он в основном и рассчитан.

Глядя на результаты младших процессоров Intel, мы посчитали, что этой программе вообще противопоказаны более высокие задержки DDR4. Однако воспользовавшись более быстрыми моделями можно увидеть, что, по мере роста их производительности, требования к пропускной способности памяти тоже растут. В итоге удается «выжать» до 3-4%. Что, впрочем, неплохо смотрится только на фоне остальных групп приложений, но слишком мало для практической значимости.

В конечном итоге приходим к практически полной эквивалентности двух типов памяти, поскольку разница между ними находится в пределах погрешности. Впрочем, как мы видели выше, есть программы, которые «жестко голосуют» за один из вариантов, но настолько странным образом, что это вообще можно списать на какие-то ошибки (или, что то же самое, неумеренную и ненужную оптимизацию), которые со временем будут исправлены. А вот такого, чтоб результаты взяли и выросли на треть (пропорционально эффективной частоте) - и близко нет.

Энергопотребление и энергоэффективность

Чтобы не перебарщивать с размерами диаграмм, мы решили ограничиться тремя точками - крайними и средней (результаты остальных двух систем желающие могут посмотреть в сводном файле). В принципе, они хорошо демонстрируют - зачем все это затевалось. А также и то, что для младших конфигураций эффектом можно, в принципе, и пренебречь: какая-то экономия наблюдается и в случае Celeron G3900, но с учетом его очень малого «аппетита» вообще... Плюс-минус пять ватт в настольной системе проблем не составят. Вот 10-15 при использовании топовых процессоров - уже что-то, однако в относительном исчислении тоже не стоит внимания.

Но, разумеется, большому любителю «зеленых» может и принести небольшое моральное удовлетворение. Как и в целом LGA1151 - согласно тестам, даже при использовании DDR3 это все равно самая «энергоэффективная» на сегодня настольная платформа, причем не уступающая даже суррогатным системам, но при несравнимо более высокой производительности. Впрочем, и LGA1150 в этом качестве была неплоха, да и «старенькая» уже LGA1155 при продлении ей жизни и отсутствии новых разработок выглядела бы неплохо. Фактически среди настольных платформ конкуренции в плане энергоэффективности давно уже не наблюдается. Так что «усиление и углубление» работы в данном направлении - отголоски событий на совсем других рынках.

Однако нераскрытым пока еще остается другой вопрос, а именно влияние разных типов памяти на энергопотребление самого процессора. «Платформенная» экономичность - понятно: все-таки и сами модули памяти имеют разное энергопотребление. А сказывается ли это непосредственно на работу контроллера, интегрированного в процессор? Заранее и не скажешь. К примеру, дискретная видеокарта тоже «портит» показатели энергоэффективности, но непосредственно на процессоре не сказывается никак. Значит, надо измерять. Тем более, для новых платформ это проблем не составляет - еще со времен LGA1150 компания «перевела» систему питания процессора непосредственно на выделенную линию БП целиком и полностью.

Эффект, как видим, есть - более скромный, чем для «платформы», но лояльным к памяти старого типа его не назовешь. Опять же - для младших моделей в ассортименте Intel им можно и пренебречь, а вот для старших можно получить и лишний десяток ватт «под крышкой». И это даже для стандартных модулей DDR3 с напряжением питания 1,5 В - увеличение последнего (при попытках повысить частоту памяти), разумеется, положение дел только усугубит. Таким образом, рекомендации «не задирать» напряжение питания модулей памяти можно верить - ничего хорошего это не принесет. Плохого, вполне возможно, что тоже. Но рисковать или нет - каждый пусть решает для себя сам. Во всяком случае, влияние использования памяти типа DDR3 на собственное энергопотребление (и, соответственно, тепловыделение) центрального процессора - задокументированный факт. Равно как и небольшой размер этого «влияния» в случае процессоров бюджетного сегмента. Или даже моделей среднего уровня.

iXBT Game Benchmark 2016

Чтобы не перегружать статью большим количеством в общем-то однотипных диаграмм, мы в очередной раз решили обойтись интегральным баллом (напомним: он отражает не абсолютные показатели, а способность систем как-то «вытягивать» хотя бы 30 кадров в секунду в разных играх).

Собственно, все очевидно. Разумеется, большая ПСП благотворно сказывается на интегрированном GPU, но принципиально положение дел измениться не может. Кое-где это позволяет, например, увеличить частоту кадров с 28 до 31, что сказывается на общем результате, однако никаких вау-эффектов не наблюдается. Это в очередной раз подтверждает, что при приобретении компьютера игрового назначения «танцевать» надо от видеокарты. Потом уже можно задуматься о процессоре, а все остальное - по вкусу. Если деньги останутся:) Но запросы современных (и даже уже не очень) игр таковы, что вряд ли останутся уже после первого шага. Так что если использование «старой» памяти позволит приобрести чуть более быструю видеокарту - этим в обязательном порядке стоит воспользоваться. А все попытки повысить производительность интегрированной графики без кардинальных ее изменений не стоят даже затраченного времени, не говоря уже о деньгах.

Итого

Итак, мы уточнили ранее полученные результаты и пришли к выводу, что пока эффект от перехода к DDR4 даже скромнее, чем казался ранее. Из чего, впрочем, не следует, что этому переходу надо как-то специально противодействовать. Во-первых, новая память позволяет сэкономить немного энергии. Причем (что тоже немаловажно) речь идет не только о большей экономичности всей системы, но и потребление процессора оказывается немного более низким, так что и работать последний будет в более щадящем режиме, и с охлаждением все проще решать. Во-вторых же, отгрузки DDR3 довольно быстро сокращаются, так что эта память дешеветь не будет наверняка, в отличие от DDR4. На которую все равно рано или поздно придется переходить, причем мы не удивимся, если поддержка DDR3 исчезнет со временем и из новых процессоров уже в рамках LGA1151. C другой стороны, если таковая память уже есть, причем в достаточном количестве, которое в ближайшем будущем увеличивать не планируется - момент перехода можно и отложить до более удачного в финансовом плане. Каких-то проблем это не составит, даже при покупке топового процессора, не говоря уже об устройствах среднего и нижнего уровня. Но, естественно, не стоит увлекаться чрезмерным повышением напряжения на модулях, поскольку определенное отрицательное значение для процессора это имеет.

Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM - DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.

Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) - используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)

    • 100-pin DIMM - используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)

    • 144-pin SO-DIMM - используется для SDR SDRAM (Single Data Rate …) в портативних компьютерах

    • 168-pin DIMM - используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах

    • 172-pin MicroDIMM - используется для DDR SDRAM (Double date rate)

    • 184-pin DIMM - используется для DDR SDRAM

    • 200-pin SO-DIMM - используется для DDR SDRAM и DDR2 SDRAM



    • 214-pin MicroDIMM - используется для DDR2 SDRAM

    • 204-pin SO-DIMM - используется для DDR3 SDRAM

    • 240-pin DIMM - используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM





    • 244-pin Mini-DIMM – для Mini Registered DIMM

    • 256-pin SO-DIMM - используется для DDR4 SDRAM

    • 284-pin DIMM - используется для DDR4 SDRAM

Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей - не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.

Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

DDR2 SDRAM

Название стандарта Тип памяти Частота памяти Частота шины Передача данных в секунду (MT/s)
PC2-3200 DDR2-400 100 МГц 200 МГц 400 3200 МБ/с
PC2-4200 DDR2-533 133 МГц 266 МГц 533 4200 МБ/с
PC2-5300 DDR2-667 166 МГц 333 МГц 667 5300 МБ/с
PC2-5400 DDR2-675 168 МГц 337 МГц 675 5400 МБ/с
PC2-5600 DDR2-700 175 МГц 350 МГц 700 5600 МБ/с
PC2-5700 DDR2-711 177 МГц 355 МГц 711 5700 МБ/с
PC2-6000 DDR2-750 187 МГц 375 МГц 750 6000 МБ/с
PC2-6400 DDR2-800 200 МГц 400 МГц 800 6400 МБ/с
PC2-7100 DDR2-888 222 МГц 444 МГц 888 7100 МБ/с
PC2-7200 DDR2-900 225 МГц 450 МГц 900 7200 МБ/с
PC2-8000 DDR2-1000 250 МГц 500 МГц 1000 8000 МБ/с
PC2-8500 DDR2-1066 266 МГц 533 МГц 1066 8500 МБ/с
PC2-9200 DDR2-1150 287 МГц 575 МГц 1150 9200 МБ/с
PC2-9600 DDR2-1200 300 МГц 600 МГц 1200 9600 МБ/с

DDR3 SDRAM

Название стандарта Тип памяти Частота памяти Частота шины Передач данных в секунду(MT/s) Пиковая скорость передачи данных
PC3-6400 DDR3-800 100 МГц 400 МГц 800 6400 МБ/с
PC3-8500 DDR3-1066 133 МГц 533 МГц 1066 8533 МБ/с
PC3-10600 DDR3-1333 166 МГц 667 МГц 1333 10667 МБ/с
PC3-12800 DDR3-1600 200 МГц 800 МГц 1600 12800 МБ/с
PC3-14400 DDR3-1800 225 МГц 900 МГц 1800 14400 МБ/с
PC3-16000 DDR3-2000 250 МГц 1000 МГц 2000 16000 МБ/с
PC3-17000 DDR3-2133 266 МГц 1066 МГц 2133 17066 МБ/с
PC3-19200 DDR3-2400 300 МГц 1200 МГц 2400 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность = Частота шины x ширину канала x кол-во каналов

Для всех DDR — количество каналов = 2 и ширина равна 64 бита.
Например, при использовании памяти DDR2-800 с частотой шины 400 МГц пропускная способность будет:

(400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) — номер детали.
Для модулей памяти у разных производителей она выглядит примерно так:

  • Kingston KVR800D2N6/1G
  • OCZ OCZ2M8001G
  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number.

Kingston Part Number Description
KVR1333D3D4R9SK2/16G 16GB 1333MHz DDR3 ECC Reg CL9 DIMM (Kit of 2) DR x4 w/TS

DDR4 SDRAM - последний стандарт памяти JEDEC. Он обеспечивает более высокий уровень производительности, с более низким потреблением энергии и большей надежностью, чем DDR3.

JEDEC начала работу над DDR4 еще в 2005 году, с окончательной спецификацией в сентябре 2012 года. Samsung выпустила первые прототипы модулей DDR4 в конце 2010 года, а первый образец 16GB DDR4-модуля в июле 2012 года. Первые, поддерживающие память DDR4 , были выпущены с чипсетом Intel X99, в августе 2014 года.

Модули DDR4 SDRAM используют интерфейс Pseudo Open Drain (POD) (ранее используемый в высокопроизводительной графической памяти DRAM) и работают на более низком напряжении 1,2 В (по сравнению с 1,5 В для DDR3). Это позволяет модулям DDR4 потреблять общей энергии на 40% меньше, чем предыдущим модулям . Таким образом экономится энергия и выделяется меньше тепла. А также, DDR4, для повышения надежности системы, поддерживает запись циклической проверки избыточности (CRC).

288-контактный модуль DDR4 SDRAM на 1 мм длиннее и на 1 мм выше 240-контактных модулей DDR3/DDR2. Это было достигнуто созданием отдельных штифтов шириной всего 0,85 мм. Что меньше, чем используемые на предыдущих модулях штифты в 1 мм. Примерно посередине между краем и центральной выемкой, модули DDR4 SDRAM не много изгибаются. Что, для облегчения установки, делает внешние контакты у центрального выреза, короче штифтов. Из-за использования разных размеров и сигналов, модули DDR4 физически и электрически несовместимы с предыдущими модулями памяти и конструкциями гнезд.

Модули DDR4 были доступны со скоростью 1600 МГц (эффективная) и выше. В данное время, со скоростями до 3,200 МГц (эффективными). Как и в случае с DDR, и DDR3, истинная тактовая частота составляет половину эффективной скорости, которая технически выражается в миллионах передач в секунду (MTps). Таблица ниже показывает официально утвержденные JEDEC типы DDR4 модулей и характеристики их пропускной способности.

JEDEC Standard DDR4 модули(260-контактный DIMM) Speeds and Transfer Rates

Тип модуля Тип чипа Базовая тактовая частота Время цикла Циклы в течение времени Скорость шины Ширина шины Модуль скорости передачи данных Двойной канал Скорость передачи данных
PC4-12800 DDR4-1600 800MHz 1.25ns 2 1,600MTps 8 bytes 12,800MBps 25,600MBps
PC4-14900 DDR4-1866 933MHz 1.07ns 2 1,866MTps 8 bytes 14,933MBps 29,866MBps
PC4-17000 DDR4-2133 1066MHz 0.94ns 2 2,133MTps 8 bytes 17,066MBps 34,133MBps
PC4-19200 DDR4-2400 1,200MHz 0.83ns 2 2,400MTps 8 bytes 19,200MBps 38,400MBps
PC4-21300 DDR4-2666 1,333MHz 0.75ns 2 2,666MTps 8 bytes 21,333MBps 42,666MBps
PC4-25600 DDR4-3200 1,600MHz 0.63ns 2 3,200MTps 8 bytes 25,600MBps 51,200MBps

DDR = двойная скорость передачи данных
МГц = миллион циклов в секунду
MTps = миллионов переводов в секунду
Мбит/с = миллион байт в секунду
NS = наносекунд (миллиардных долей секунды)

Технически, топология DDR4 - не шина, как это использовалось в DDR3 и более ранних стандартах памяти. Вместо этого, DDR4 SDRAM использует соединение «точка-точка», где каждый канал в контроллере памяти подключается к одному модулю.

Как правило, вы можете найти модули DDR4 номиналом CL12 - CL16.

RDRAM

Rambus DRAM (RDRAM) - запатентованная технология памяти (не JEDEC), которая использовалась, в основном, в некоторых системах Pentium III и 4 на базе Intel с 2000 по 2002 год. Сегодня эти системы почти не используются.

© 2024 soundpad-voice.ru - Компьютер. Ноутбуки. ОС. Программы